Digestive system of reptiles

Diferencias entre el aparato digestivo humano y el de las aves
Se recibieron cuatro colibríes de vientre brillante huérfanos de 2 y 5 días de nacidos en dos épocas reproductivas diferentes. Los animales fueron alimentados con una dieta artificial basada en los componentes de nutrientes descritos en el Manual Veterinario Merk. Los individuos fueron alimentados con una frecuencia de 15 minutos mientras estaban en el nido, y de 30 minutos cuando abandonaban el nido, cuidando siempre de no sobrealimentar el buche. Una vez que podían alimentarse por sí mismos, la comida se ofrecía ad-libitum. Dentro del manejo se les ofrecieron las condiciones para prácticas de vuelo, interacción con flores de zona y comederos artificiales como transición de la alimentación previa a la liberación. Todas las aves fueron liberadas una vez mostraron capacidad para volar libres y mantener el vuelo sostenido necesario para alimentarse. Las aves obtenidas en la primera temporada fueron liberadas a los 13 y 25 días, respectivamente. Uno de ellos ya había abandonado el nido cuando fue recibido, y el otro lo hizo a los 18 días. Las aves obtenidas en la segunda temporada fueron liberadas a los 10 y 12 días, abandonando el nido a los 6 y 8 días, respectivamente. La dieta y el manejo cumplieron el objetivo, que era desarrollar las aves hasta que pudieran ser independientes.
Digestive structures in the different animal groups
Mouth1.1. can be1.1.1. open1.1.1.1.1. primitive maxillary fishes and lampreys1.1.2. closed1.1.2.1. all others1.2. lips1.3. tongue1.3.1. moves1.3.1.1. tetrapods1. 3.1.1.1. helps to mix food with saliva and its transit to the esophagus1.3.2. sticks to the ground1.3.2. 3.1.1.1.1. helps to mix food with saliva and its transit to the esophagus1.3.2. sticks to the floor of the oral cavity1.3.2.1. fishes1.3.3.3. can capture prey1. 3.3.1. reptiles and amphibians1.3.4. has sensory cells such as taste buds that distinguish tastes1.3.4.1. mammals1.4. teeth1.4.1. cut and grind in mechanical digestion1. 4.2. those with beaks do not have1.4.3. amphibious fish and reptiles1.4.3.1. conical and sharp teeth that are constantly renewed1.4.4. mammals1.4.4.1. teeth inserted in alveoli and have a constant number1.4.5. are adapted according to food1.4.5.1. carnivorous omnivorous and herbivorous1.5. salivary glands1.5.1. have all except fish, which have mucous glands1.5.2. saliva composed of1.5.2.1. 98% water1.5.2.2. lysozyme1.5.2.2.1. defends1.5.2.3. mucin1.5.2.3.1. facilitates ingestion1.5.2.4. ptyalin1.5.2.4.1. separates starch1.5.2.5. immunoglobulin1.5.2.5.1. defends1.5.2.6. lactoferrin1.5.2.6.1. fixes faith and prevents bacterial development1.5.2.7. lingual lipase1. 5.2.7.1. short chain triglycerides1.5.3. exist in all but fish with mucous glands1.5.4. exist in all but fish with mucous glands1.5.5.5. exist in all but fish with mucous glands1.5.6. exist in all but fish with mucous glands1.5.7. exist in all but fish with mucous glands
Digestive system of animals wikipedia
The ybyja or two-headed brown snake (Amphisbaena camura) is a sauropsid reptile of the family Amphisbaenidae. It is found in Paraguay, Bolivia (Amazonas, Beni, Santa Cruz, Tarija) and Brazil (Mato Grosso).[1] The Guarani tradition has it killing two-headed brown snakes.
Guarani tradition causes them to kill the animal because of the false rumor that it is a parasite. In 2010, 10 % of the species in Asunción disappeared due to this false belief, as it was exterminated. People argue that it enters through the anus and lodges in the digestive tract.
Their situation is similar due to the presence of Guarani. The ybyja are feared because of their similarity to the lethal creature of the legend of the two-headed snake: in both, their ends are indistinct.
Digestive system in mammals
Among the advanced diagnostic methods for cataracts are the slit lamp or biomicroscope, infrared reflectography, conventional ocular ultrasound and high-frequency ocular ultrasound (UBM).
The slit lamp is an essential device for the clinical ophthalmologist. It consists of a binocular microscope and a variable illumination system. These two features will provide a high degree of magnification (6×-40× magnification) and a powerful light beam modifiable thanks to different filters and mirrors. This provides a stereoscopic image with great detail of the ocular structure under study (Figure 1).
As far as the examination of the crystalline lens is concerned, using the biomicroscope, the direct illumination and backlighting techniques described above can be performed, obtaining more detailed and precise images thanks to the different magnification means.
However, the greatest attraction of the slit lamp when exploring the crystalline lens lies in the possibility of narrowing the beam of light emitted until a thin luminous line barely a millimeter thick is obtained. This property, together with the ability to lateralize the illumination system with respect to the binocular microscope, will allow a "slit or virtual cut" of the crystalline lens, facilitating the study of its different parts, as well as the precise localization of any alterations that may be present. Consequently, this allows an adequate characterization and classification of the nature and type of cataract.